

SA Army

Technology

Wark Session

111

Technology Work Session for the South African Army; Hosted by the CSIR

Autonomous and Remotely **Controlled Systems**

Man-portable UAV evaluations

Stefan Kersop CSIR Defence, Peace, Safety and Security

Date: 20 April 2012

our future through science

Outline of presentation

- Explain evaluation process followed
- Individual outcome for each system
- Comparison of systems
- Summary
- Conclusions and recommendations

Evaluation process

- Requirements (Mandatory and Desired)
- Market research
- Identified the systems for evaluation
- Invited respective suppliers
- Conducted evaluations
- Analysed results
- Compared results

Identified systems

Evaluation scenarios

Tactical Reconnaissance (Day & Night)

- Planning, assemble, launch, recover
- Fly 10km, 60 minutes, silent, video, aircraft control

Small Team Reconnaissance (Day & Night)

- Back-packable, 2 men team on foot
- Undetectable (silent), launch, recover

Convoy Protection (Day)

- Mobile base station at back of bakkie
- 5km road @ 20 30km/h
- Detect vehicles & people ahead

Command & Control (C2) (Day)

- Planning, launch, camera control, recovery
- Detection of own & enemy forces around buildings

CSIR T-Hawk outcome summary

Pros:

- Good image quality
- Quick and easy assembled, hand launch
- Reliable & stable flight
- Good image quality
- Local (Adaptability)
- Cost (R0.6m)
- Cons:
 - Not back-packable
 - 45 minutes endurance
 - Airframe fragile

ATE KIWIT outcome summary

Pros:

- Reliable and stable flight
- Quick & easily deployed, hand launch
- High resolution photos
- Local (Adaptability)
- Cost (R0.63m)
- Cons:
 - Large GCS (Smaller one added recently)
 - Landing with manual remote control
 - Not back packable
 - Only day camera without PTZ
 - 36 minutes, 4km

Cyberflight E-swifteye outcome summary

Pros:

- Quick & easily deployed, hand launch
- PTZ camera control
- Good night image
- Rugged

Cons:

- Not back-packable
- Noisy
- 40 minutes endurance
- Day image not good quality
- Take-off difficulty at high altitudes

Cyberflight Maveric outcome summary

Pros:

- Small, light & rugged
- Back packable
- Quick & easily assembled
- Looks like bird in the sky
- Cons:
 - Image not as stable as others
 - 20 minutes, 6km
 - Fixed zoom
 - Landing not precise

Cyberflight evaluation picture

Alpi-aviation STRIX outcome summary

Pros:

- Good PTZ payload
- 1.5 hrs flight endurance
- Stable flight
- Easy to operate
- Small parts (for its size)

Cons:

- Big (3m wing) & heavy (8kg)
- Catapult big, bulky, noisy
- Take-off difficulty at high altitudes

Alpi-aviation STRIX photos from evaluations

© CSIR 2012 Slide 12

our future through science

Comparison of UAV systems

Major Requirements	T-Hawk	ESWIFT-	MAVERIC	κιωιτ	STRIX
	1	ETE		and the	
Take off, fly & land autonomously following map waypoints	\checkmark	\checkmark	\checkmark	X	\checkmark
Endurance (60 min)	45	40	30	36	90
Distance (10km)	10	10	6	4	10
Size (wingspan < 2.7m)	2.5	1.25	0.75	2.4	3
Weight (5kg)	3	2.2	1.15	3.8	8
Small parts (<0.5m to be back packable)	1	0.4	\checkmark	1.2	\checkmark
Hand launched (Or bungee, not catapult)	\checkmark	\checkmark	\checkmark	\checkmark	Х
Day camera (pan-tilt-zoom) with acceptable image	\checkmark	\checkmark	No zoom	No P-T	\checkmark
Night camera detect fires, people & vehicles	\checkmark	\checkmark	Х	X	Х
Land within 75m radius from launching point	\checkmark	Х	Х	X	\checkmark
Complete 5 flights without maintenance (Ruggedness)	X	Х	\checkmark	\checkmark	X
Low noise (Inaudible during night at 300m above ground)	\checkmark	Х	\checkmark	\checkmark	X
Price for 2 aircraft, day & night camera, GCS, spares, packaging, chargers, manual (R2m)	R0.6m	R1.52m	R1.71m	R0.63m	R2.8m

Scenario summary

UAV	Tactical Recce	Small Team Recce	C2	Convoy protection	PRICE	Notes
T-HAWK	\checkmark	X	\checkmark	\checkmark	R0.60m	Not back-packable, endurance
KIWIT	X	X	\checkmark	\checkmark	R0.63m	Not back-packable, range and endurance
ESWIFT-EYE	X	X	\checkmark	\checkmark	R1.52m	Not back-packable, range, endurance, noisy
MAVERIC	X	\checkmark	\checkmark	\checkmark	R1.71m	Range, endurance, no zoom
STRIX	X	X	\checkmark	\checkmark	R2.84m	Bid & Heavy, Not usable at high altitudes

 $\sqrt{\text{Compliance}}$ $\sqrt{\text{Limited compliance}}$ X Non-compliance

Conclusions & Recommendations

- No system met all requirements, however many are field operational
- It is better to have 80% of required functionality than nothing at all
- There are many similar systems to choose from
- Local systems meet SANDF requirements on par with international
- Field evaluations are vital to show the quality of data they can deliver
- UAV systems are highly recommended for SANDF operations
- Consider everything from local market to state of the art US market for UAV technology solutions
- Tailor the requirements if 100% required functionality still not found
- Evaluate advanced systems before making procurement decisions
- Buy quantities for current needs; UAV technology improves rapidly
- Make sure what you buy, is what you want, is what you get

Thank You

Stefan Kersop skersop@csir.co.za

